Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

G. M. Golzar Hossain, ${ }^{\text {a* }}$ Afroza Banu ${ }^{\text {a }}$ and Zaki S. Seddigi ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales, and ${ }^{\mathbf{b}}$ Department of Chemistry, King Fahd University of Petroleum and Minerals, PO Box 5048, Dhahran 31261, Saudi Arabia

Correspondence e-mail: acsbd@yahoo.com

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.075$
Data-to-parameter ratio $=20.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-iodo-1 $\kappa l: 2 \kappa l$-tris(tri-m-tolylphosphine)$1 \kappa^{2} P, P^{\prime}: 2 \kappa \boldsymbol{P}^{\prime \prime}$-dicopper(I): a new polymorph

The structure of the title compound, $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{P}\right)_{3}\right]$, was redetermined at low temperature $(150 \mathrm{~K})$ and shown to be a new triclinic polymorph.

Comment

The title compound, (I), is a binuclear copper(I) complex, in which the Cu atoms are bridged by two I atoms. A total of three molecules of tri- m-tolylphosphine are coordinated to the two copper centres. The structure of the same compound was reported by Akrivos et al. (1993) and shown also to be triclinic, space group $P \overline{1}$. This polymorph, (II), has a significantly longer c axis $[24.635 \AA$ compared to 19.0630 (3) \AA for the present structure, (I)] and slightly smaller cell angles, considering the reduced cells of both polymorphs.

(I)

The molecular structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are given in Table 1. In (I), atom Cu 1 is coordinated by one P atom (P 1), and atom Cu 2 is coordinated by two P atoms (P 2 and P 3). The copper centres are bridged by two I atoms. The intramolecular $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 2.9551 (4) \AA is decreased by ca $0.05 \AA$ compared with that in (II). An interesting difference between the two polymorphs is that the $\mathrm{Cu}-\mathrm{I}$ distances are inverted. That is, in (I), the $\mathrm{Cu} 1-\mathrm{I}$ distances average 2.5544 (1) \AA and the $\mathrm{Cu} 2-\mathrm{I}$ distances average 2.750 (1) \AA. This is exactly the opposite situation in polymorph (II) where the corresponding average distances are 2.767 and $2.549 \AA$, respectively. The $\mathrm{Cu}-\mathrm{I}-\mathrm{Cu}$ angles are very similar. The dihedral angle between the $\mathrm{Cu} 1 /$ $\mathrm{I} 1 / \mathrm{I} 2$ and $\mathrm{Cu} 2 / \mathrm{I} 1 / \mathrm{I} 2$ planes of $3.75(12)^{\circ}$ is smaller than the value of 8.56° in polymorph (II).

Experimental

A suspension of tri- m-tolylphosphine ($0.310 \mathrm{~g}, 1 \mathrm{mmol}$) and copper(I) iodide ($0.382 \mathrm{~g}, 2 \mathrm{mmol}$) in 2-propanol (50 ml) was refluxed

Received 28 July 2005
Accepted 9 November 2005 Online 16 November 2005

Figure 1
View of the molecular structure of compound (I), showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
for 16 h . The resulting solution was filtered while hot. Slow evaporation of the solvent at room temperature gave colourless crystals of (I).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{P}\right)_{3}\right]} \\
& M_{r}=1293.92 \\
& \text { Triclinic, } P \overline{1} \\
& a=11.6770(1) \AA \\
& b=13.5461(1) \AA \\
& c=19.0630(3) \AA \\
& \alpha=86.022(5)^{\circ} \\
& \beta=86.1216(5)^{\circ} \\
& \gamma=72.6081(5)^{\circ} \\
& V=2867.07(6) \AA^{3}
\end{aligned}
$$

$$
Z=2
$$

$D_{x}=1.499 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12975
reflections
$\theta=2.9-27.5^{\circ}$
$\mu=1.94 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, colourless
$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.690, T_{\text {max }}=0.749$
40258 measured reflections
12975 independent reflections

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031
$$

$$
w R\left(F^{2}\right)=0.075
$$

$$
S=1.03
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0251 P)^{2}\right. \\
& \quad+3.121 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

12975 reflections
640 parameters

H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$	$2.9551(4)$	$\mathrm{Cu} 1-\mathrm{I} 2$	$2.5481(4)$
$\mathrm{Cu} 1-\mathrm{P} 1$	$2.2298(7)$	$\mathrm{Cu} 2-\mathrm{P} 3$	$2.2737(7)$
$\mathrm{Cu} 2-\mathrm{P} 2$	$2.2687(7)$	$\mathrm{Cu} 2-\mathrm{I} 2$	$2.7454(3)$
$\mathrm{Cu} 1-\mathrm{I} 1$	$2.5403(3)$	$\mathrm{Cu} 2-\mathrm{I} 1$	$2.7548(3)$
$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$126.33(2)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{I} 1$	$102.441(19)$
$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$114.78(2)$	$\mathrm{P} 3-\mathrm{Cu} 2-\mathrm{I} 1$	$106.48(2)$
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$118.859(12)$	$\mathrm{I} 2-\mathrm{Cu} 2-\mathrm{I} 1$	$105.603(10)$
$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{P} 3$	$130.66(2)$	$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2$	$67.706(10)$
$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{I} 2$	$109.470(19)$	$\mathrm{Cu} 1-\mathrm{I} 2-\mathrm{Cu} 2$	$67.750(10)$
$\mathrm{P} 3-\mathrm{Cu} 2-\mathrm{I} 2$	$100.138(19)$		

The H atoms were placed in calculated positions (aromatic $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$), and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ aromatic C$)$ and $1.5 U_{\text {eq }}($ methyl C$)$. The deepest electron-density hole lies $0.86 \AA$ from atom I2.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

ZSS acknowledges King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for financial support.

References

Akrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Mentzafos, D. \& Terzis, A. (1993). Inorg. Chim. Acta, 206, 163-168.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

